Joung, J. F.; Fong, M. H.; Roh, J.; Tu, Z.; Bradshaw, J.; Coley, C. W. Reproducing Reaction Mechanisms with Machine-Learning Models Trained on a Large-Scale Mechanistic Dataset.
Angewandte Chemie International Edition 2024.
https://doi.org/10.1002/anie.202411296.
Meijer, D.; A. Beniddir, M.; W. Coley, C.; M. Mejri, Y.; Öztürk, M.; Hooft, J. J. J. van der; H. Medema, M.; Skiredj, A. Empowering Natural Product Science with AI: Leveraging Multimodal Data and Knowledge Graphs.
Natural Product Reports 2024.
https://doi.org/10.1039/D4NP00008K.
Pracht, P.; Pillai, Y.; Kapil, V.; Csányi, G.; Gönnheimer, N.; Vondrák, M.; Margraf, J. T.; Wales, D. J.
Efficient Composite Infrared Spectroscopy: Combining the Doubly-Harmonic Approximation with Machine Learning Potentials. arXiv.org.
https://arxiv.org/abs/2408.08174v1.
Greenman, K. P. Optical Property Prediction and Molecular Discovery through Multi-Fidelity Deep Learning and Computational Chemistry. Thesis, Massachusetts Institute of Technology, 2024.
https://dspace.mit.edu/handle/1721.1/155385.
Yu, K.; Roh, J.; Li, Z.; Gao, W.; Wang, R.; Coley, C. W.
Double-Ended Synthesis Planning with Goal-Constrained Bidirectional Search. arXiv.org.
https://arxiv.org/abs/2407.06334v1.
Stark, H.; Jing, B.; Barzilay, R.; Jaakkola, T. Harmonic Self-Conditioned Flow Matching for Joint Multi-Ligand Docking and Binding Site Design; ICML, 2024. https://openreview.net/forum?id=XTrMY9sHKF.
McDonald, M. A.; Koscher, B. A.; Canty, R. B.; Jensen, K. F. Calibration-Free Reaction Yield Quantification by HPLC with a Machine-Learning Model of Extinction Coefficients.
Chemical Science 2024.
https://doi.org/10.1039/D4SC01881H.
Mahjour, B. A.; Coley, C. W. RDCanon: A Python Package for Canonicalizing the Order of Tokens in SMARTS Queries. J. Chem. Inf. Model. 2024, 64 (8), 2948–2954. https://doi.org/10.1021/acs.jcim.4c00138.
Corso, G.; Deng, A.; Fry, B.; Polizzi, N.; Barzilay, R.; Jaakkola, T. Deep Confident Steps to New Pockets: Strategies for Docking Generalization. arXiv February 28, 2024.
https://doi.org/10.48550/arXiv.2402.18396.
Li, S.-C.; Wu, H.; Menon, A.; Spiekermann, K.; Li, Y.-P.; Green, W. When Do Quantum Mechanical Descriptors Help Graph Neural Networks Predict Chemical Properties? ChemRxiv February 20, 2024.
https://doi.org/10.26434/chemrxiv-2024-7q438.
Stark, H.; Jing, B.; Wang, C.; Corso, G.; Berger, B.; Barzilay, R.; Jaakkola, T. Dirichlet Flow Matching with Applications to DNA Sequence Design. arXiv February 8, 2024.
https://doi.org/10.48550/arXiv.2402.05841.
Campbell, A.; Yim, J.; Barzilay, R.; Rainforth, T.; Jaakkola, T. Generative Flows on Discrete State-Spaces: Enabling Multimodal Flows with Applications to Protein Co-Design. arXiv February 7, 2024.
https://doi.org/10.48550/arXiv.2402.04997.
Yim, J.; Campbell, A.; Mathieu, E.; Foong, A. Y. K.; Gastegger, M.; Jiménez-Luna, J.; Lewis, S.; Satorras, V. G.; Veeling, B. S.; Noé, F.; Barzilay, R.; Jaakkola, T. S. Improved Motif-Scaffolding with SE(3) Flow Matching. arXiv January 8, 2024. https://doi.org/10.48550/arXiv.2401.04082.
Heid, E.; Greenman, K. P.; Chung, Y.; Li, S.-C.; Graff, D. E.; Vermeire, F. H.; Wu, H.; Green, W. H.; McGill, C. J. Chemprop: A Machine Learning Package for Chemical Property Prediction.
J. Chem. Inf. Model. 2024,
64(1), 9–17.
https://doi.org/10.1021/acs.jcim.3c01250.
Koscher, B. A.; Canty, R. B.; McDonald, M. A.; Greenman, K. P.; McGill, C. J.; Bilodeau, C. L.; Jin, W.; Wu, H.; Vermeire, F. H.; Jin, B.; Hart, T.; Kulesza, T.; Li, S.-C.; Jaakkola, T. S.; Barzilay, R.; Gómez-Bombarelli, R.; Green, W. H.; Jensen, K. F. Autonomous, Multiproperty-Driven Molecular Discovery: From Predictions to Measurements and Back.
Science 2023,
382 (6677), eadi1407.
https://doi.org/10.1126/science.adi1407.
Zheng, J. W.; Green, W. H. Experimental Compilation and Computation of Hydration Free Energies for Ionic Solutes.
J. Phys. Chem. A 2023,
127 (48), 10268–10281.
https://doi.org/10.1021/acs.jpca.3c05514.
Pattanaik, L.; Menon, A.; Settels, V.; Spiekermann, K. A.; Tan, Z.; Vermeire, F. H.; Sandfort, F.; Eiden, P.; Green, W. H. ConfSolv: Prediction of Solute Conformer-Free Energies across a Range of Solvents.
J. Phys. Chem. B 2023,
127 (47), 10151–10170.
https://doi.org/10.1021/acs.jpcb.3c05904.
Payne, A. M.; Wu, H.; Pang, H.-W.; Grambow, C. A.; Ranasinghe, D. S.; Dong, X.; Dana, A. G.; Green, W. H. Towards Accurate Quantum Mechanical Thermochemistry: (1) Extensible Implementation and Comparison of Bond Additivity Corrections and Isodesmic Reactions. ChemRxiv November 29, 2023.
https://doi.org/10.26434/chemrxiv-2023-4xlj9-v2.
Griffin, D. J.; Coley, C. W.; Frank, S. A.; Hawkins, J. M.; Jensen, K. F. Opportunities for Machine Learning and Artificial Intelligence to Advance Synthetic Drug Substance Process Development. Org. Process Res. Dev. 2023, 27(11), 1868–1879. https://doi.org/10.1021/acs.oprd.3c00229.
Goldman, S.; Wohlwend, J.; Stražar, M.; Haroush, G.; Xavier, R. J.; Coley, C. W. Annotating Metabolite Mass Spectra with Domain-Inspired Chemical Formula Transformers.
Nat Mach Intell 2023, 1–15.
https://doi.org/10.1038/s42256-023-00708-3.
Biswas, S.; Chung, Y.; Ramirez, J.; Wu, H.; Green, W. H. Predicting Critical Properties and Acentric Factors of Fluids Using Multitask Machine Learning.
J. Chem. Inf. Model. 2023,
63 (15), 4574–4588.
https://doi.org/10.1021/acs.jcim.3c00546.
Neeser, R. M.; Isert, C.; Stuyver, T.; Schneider, G.; Coley, C. W. QMugs 1.1: Quantum Mechanical Properties of Organic Compounds Commonly Encountered in Reactivity Datasets.
Chemical Data Collections 2023,
46, 101040.
https://doi.org/10.1016/j.cdc.2023.101040.
Watson, J. L.; Juergens, D.; Bennett, N. R.; Trippe, B. L.; Yim, J.; Eisenach, H. E.; Ahern, W.; Borst, A. J.; Ragotte, R. J.; Milles, L. F.; Wicky, B. I. M.; Hanikel, N.; Pellock, S. J.; Courbet, A.; Sheffler, W.; Wang, J.; Venkatesh, P.; Sappington, I.; Torres, S. V.; Lauko, A.; De Bortoli, V.; Mathieu, E.; Ovchinnikov, S.; Barzilay, R.; Jaakkola, T. S.; DiMaio, F.; Baek, M.; Baker, D. De Novo Design of Protein Structure and Function with RFdiffusion.
Nature 2023,
620 (7976), 1089–1100.
https://doi.org/10.1038/s41586-023-06415-8.
Mercado, R.; Kearnes, S. M.; Coley, C. W. Data Sharing in Chemistry: Lessons Learned and a Case for Mandating Structured Reaction Data.
J. Chem. Inf. Model. 2023,
63 (14), 4253–4265.
https://doi.org/10.1021/acs.jcim.3c00607.
Liu, S.; Tu, Z.; Xu, M.; Zhang, Z.; Lin, L.; Ying, R.; Tang, J.; Zhao, P.; Wu, D. FusionRetro: Molecule Representation Fusion via in-Context Learning for Retrosynthetic Planning. In
Proceedings of the 40th International Conference on Machine Learning; ICML’23; JMLR.org: Honolulu, Hawaii, USA, 2023; Vol. 202, pp 22028–22041.
https://dl.acm.org/doi/10.5555/3618408.3619322.
Qian, Y.; Guo, J.; Tu, Z.; Coley, C. W.; Barzilay, R. RxnScribe: A Sequence Generation Model for Reaction Diagram Parsing.
J. Chem. Inf. Model. 2023,
63 (13), 4030–4041.
https://doi.org/10.1021/acs.jcim.3c00439.
Heid, E.; McGill, C. J.; Vermeire, F. H.; Green, W. H. Characterizing Uncertainty in Machine Learning for Chemistry.
J. Chem. Inf. Model. 2023,
63 (13), 4012–4029.
https://doi.org/10.1021/acs.jcim.3c00373.
Yim, J.; Trippe, B. L.; De Bortoli, V.; Mathieu, E.; Doucet, A.; Barzilay, R.; Jaakkola, T. SE(3) Diffusion Model with Application to Protein Backbone Generation. arXiv May 22, 2023.
https://doi.org/10.48550/arXiv.2302.02277.
Qian, Y.; Guo, J.; Tu, Z.; Li, Z.; Coley, C. W.; Barzilay, R. MolScribe: Robust Molecular Structure Recognition with Image-to-Graph Generation.
J. Chem. Inf. Model. 2023,
63 (7), 1925–1934.
https://doi.org/10.1021/acs.jcim.2c01480.
Ketata, M. A.; Laue, C.; Mammadov, R.; Stärk, H.; Wu, M.; Corso, G.; Marquet, C.; Barzilay, R.; Jaakkola, T. S. DiffDock-PP: Rigid Protein-Protein Docking with Diffusion Models. arXiv April 7, 2023.
https://doi.org/10.48550/arXiv.2304.03889.
Tu, Z.; Stuyver, T.; Coley, C. W. Predictive Chemistry: Machine Learning for Reaction Deployment, Reaction Development, and Reaction Discovery.
Chem. Sci. 2023,
14 (2), 226–244.
https://doi.org/10.1039/D2SC05089G.
Tu, Z.; Levin, I.; Coley, C. W. Computer-Assisted Synthesis Planning. In
Enabling Tools and Techniques for Organic Synthesis; John Wiley & Sons, Ltd, 2023; pp 423–459.
https://doi.org/10.1002/9781119855668.ch11.
Sankaranarayanan, K.; Jensen, K. F. Computer-Assisted Multistep Chemoenzymatic Retrosynthesis Using a Chemical Synthesis Planner – Chemical Science (RSC Publishing).
Chemical Science 2023,
14, 6467–6475.
https://doi.org/10.1039/D3SC01355C.
Levin, I.; Fortunato, M. E.; Tan, K. L.; Coley, C. W. Computer-Aided Evaluation and Exploration of Chemical Spaces Constrained by Reaction Pathways.
AIChE Journal 2023,
69 (12), e18234.
https://doi.org/10.1002/aic.18234.
Zahrt, A. F.; Mo, Y.; Nandiwale, K. Y.; Shprints, R.; Heid, E.; Jensen, K. F. Machine-Learning-Guided Discovery of Electrochemical Reactions.
J. Am. Chem. Soc. 2022,
144 (49), 22599–22610.
https://doi.org/10.1021/jacs.2c08997.
Xu, J.; Kalyani, D.; Struble, T.; Dreher, S.; Krska, S.; Buchwald, S. L.; Jensen, K. F. Roadmap to Pharmaceutically Relevant Reactivity Models Leveraging High-Throughput Experimentation.
2022.
https://doi.org/10.26434/chemrxiv-2022-x694w.
Tu, Z.; Coley, C. W. Permutation Invariant Graph-to-Sequence Model for Template-Free Retrosynthesis and Reaction Prediction.
J. Chem. Inf. Model. 2022,
62 (15), 3503–3513.
https://doi.org/10.1021/acs.jcim.2c00321.
Ganea, O.-E.; Huang, X.; Bunne, C.; Bian, Y.; Barzilay, R.; Jaakkola, T.; Krause, A.
Independent SE(3)-Equivariant Models for End-to-End Rigid Protein Docking; arXiv:2111.07786; arXiv, 2022.
https://doi.org/10.48550/arXiv.2111.07786.
Xie, T.; Fu, X.; Ganea, O.-E.; Barzilay, R.; Jaakkola, T. Crystal Diffusion Variational Autoencoder for Periodic Material Generation.
ICLR 2022.
http://arxiv.org/abs/2110.06197.
Stuyver, T.; Coley, C. W. Quantum Chemistry-Augmented Neural Networks for Reactivity Prediction: Performance, Generalizability and Interpretability.
J. Chem. Phys. 2022,
156 (8), 084104.
https://doi.org/10.1063/5.0079574.
Chung, Y.; Vermeire, F. H.; Wu, H.; Walker, P. J.; Abraham, M. H.; Green, W. H. Group Contribution and Machine Learning Approaches to Predict Abraham Solute Parameters, Solvation Free Energy, and Solvation Enthalpy.
J. Chem. Inf. Model. 2022,
62 (3), 433–446.
https://doi.org/10.1021/acs.jcim.1c01103.
Jin, W.; Wohlwend, J.; Barzilay, R.; Jaakkola, T.
Iterative Refinement Graph Neural Network for Antibody Sequence-Structure Co-Design; arXiv:2110.04624; ICLR, 2022.
https://doi.org/10.48550/arXiv.2110.04624.
Heid, E.; Liu, J.; Aude, A.; Green, W. H. Influence of Template Size, Canonicalization, and Exclusivity for Retrosynthesis and Reaction Prediction Applications.
J. Chem. Inf. Model. 2022,
62 (1), 16–26.
https://doi.org/10.1021/acs.jcim.1c01192.
Sankaranarayanan, K.; Heid, E.; W. Coley, C.; Verma, D.; H. Green, W.; F. Jensen, K. Similarity Based Enzymatic Retrosynthesis.
Chemical Science 2022,
13 (20), 6039–6053.
https://doi.org/10.1039/D2SC01588A.
Bilodeau, C.; Jin, W.; Jaakkola, T.; Barzilay, R.; Jensen, K. F. Generative Models for Molecular Discovery: Recent Advances and Challenges.
WIREs Computational Molecular Science 2022,
12 (5), e1608.
https://doi.org/10.1002/wcms.1608.
Kearnes, S. M.; Maser, M. R.; Wleklinski, M.; Kast, A.; Doyle, A. G.; Dreher, S. D.; Hawkins, J. M.; Jensen, K. F.; Coley, C. W. The Open Reaction Database.
J. Am. Chem. Soc. 2021,
143 (45), 18820–18826.
https://doi.org/10.1021/jacs.1c09820.
Heid, E.; Goldman, S.; Sankaranarayanan, K.; Coley, C. W.; Flamm, C.; Green, W. H. EHreact: Extended Hasse Diagrams for the Extraction and Scoring of Enzymatic Reaction Templates.
J. Chem. Inf. Model. 2021,
61 (10), 4949–4961.
https://doi.org/10.1021/acs.jcim.1c00921.
Chen, B.; Bécigneul, G.; Ganea, O.-E.; Barzilay, R.; Jaakkola, T. Optimal Transport Graph Neural Networks.
arXiv:2006.04804, 2021.
http://arxiv.org/abs/2006.04804.
Jin, W.; Stokes, J. M.; Eastman, R. T.; Itkin, Z.; Zakharov, A. V.; Collins, J. J.; Jaakkola, T. S.; Barzilay, R. Deep Learning Identifies Synergistic Drug Combinations for Treating COVID-19.
Proceedings of the National Academy of Sciences 2021,
118 (39), e2105070118.
https://doi.org/10.1073/pnas.2105070118.
Soleimany, A. P.; Amini, A.; Goldman, S.; Rus, D.; Bhatia, S. N.; Coley, C. W. Evidential Deep Learning for Guided Molecular Property Prediction and Discovery.
ACS Cent. Sci. 2021,
7 (8), 1356–1367.
https://doi.org/10.1021/acscentsci.1c00546.
Yang, K.; Jin, W.; Swanson, K.; Barzilay, R.; Jaakkola, T. Improving Molecular Design by Stochastic Iterative Target Augmentation.
arXiv:2002.04720. 2021.
http://arxiv.org/abs/2002.04720.
Vermeire, F. H.; Green, W. H. Transfer Learning for Solvation Free Energies: From Quantum Chemistry to Experiments.
Chemical Engineering Journal 2021,
418, 129307.
https://doi.org/10.1016/j.cej.2021.129307.
McGill, C.; Forsuelo, M.; Guan, Y.; Green, W. H. Predicting Infrared Spectra with Message Passing Neural Networks.
J. Chem. Inf. Model. 2021,
61 (6), 2594–2609.
https://doi.org/10.1021/acs.jcim.1c00055.
Graff, D. E.; Shakhnovich, E. I.; Coley, C. W. Accelerating High-Throughput Virtual Screening through Molecular Pool-Based Active Learning.
Chem. Sci. 2021,
12 (22), 7866–7881.
https://doi.org/10.1039/D0SC06805E.
Ganea, O.-E.; Pattanaik, L.; Coley, C. W.; Barzilay, R.; Jensen, K. F.; Green, W. H.; Jaakkola, T. S.
GeoMol: Torsional Geometric Generation of Molecular 3D Conformer Ensembles; arXiv:2106.07802.; 2021.
https://doi.org/10.48550/arXiv.2106.07802.
Guan, Y.; Coley, C. W.; Wu, H.; Ranasinghe, D.; Heid, E.; Struble, T. J.; Pattanaik, L.; Green, W. H.; Jensen, K. F. Regio-Selectivity Prediction with a Machine-Learned Reaction Representation and on-the-Fly Quantum Mechanical Descriptors.
Chem. Sci. 2021,
12 (6), 2198–2208.
https://doi.org/10.1039/D0SC04823B.
Mo, Y.; Guan, Y.; Verma, P.; Guo, J.; Fortunato, M. E.; Lu, Z.; Coley, C. W.; Jensen, K. F. Evaluating and Clustering Retrosynthesis Pathways with Learned Strategy.
Chem. Sci. 2021,
12 (4), 1469–1478.
https://doi.org/10.1039/D0SC05078D.
Gao, H.; Pauphilet, J.; Struble, T. J.; Coley, C. W.; Jensen, K. F. Direct Optimization across Computer-Generated Reaction Networks Balances Materials Use and Feasibility of Synthesis Plans for Molecule Libraries.
J. Chem. Inf. Model. 2021,
61 (1), 493–504.
https://doi.org/10.1021/acs.jcim.0c01032.
Jin, W.; Barzilay, R.; Jaakkola, T. Discovering Synergistic Drug Combinations for COVID with Biological Bottleneck Models.
arXiv:2011.04651 2020.
http://arxiv.org/abs/2011.04651.
Wang, X.; Qian, Y.; Gao, H.; Coley, C. W.; Mo, Y.; Barzilay, R.; Jensen, K. F. Towards Efficient Discovery of Green Synthetic Pathways with Monte Carlo Tree Search and Reinforcement Learning.
Chem. Sci. 2020,
11(40), 10959–10972.
https://doi.org/10.1039/D0SC04184J.
Jin, W.; Barzilay, R.; Jaakkola, T. Enforcing Predictive Invariance across Structured Biomedical Domains.
arXiv:2006.03908. 2020.
http://arxiv.org/abs/2006.03908.
Eyke, N. S.; Green, W. H.; Jensen, K. F. Iterative Experimental Design Based on Active Machine Learning Reduces the Experimental Burden Associated with Reaction Screening.
React. Chem. Eng. 2020,
5 (10), 1963–1972.
https://doi.org/10.1039/D0RE00232A.
Struble, T. J.; Alvarez, J. C.; Brown, S. P.; Chytil, M.; Cisar, J.; DesJarlais, R. L.; Engkvist, O.; Frank, S. A.; Greve, D. R.; Griffin, D. J.; Hou, X.; Johannes, J. W.; Kreatsoulas, C.; Lahue, B.; Mathea, M.; Mogk, G.; Nicolaou, C. A.; Palmer, A. D.; Price, D. J.; Robinson, R. I.; Salentin, S.; Xing, L.; Jaakkola, T.; Green, William. H.; Barzilay, R.; Coley, C. W.; Jensen, K. F. Current and Future Roles of Artificial Intelligence in Medicinal Chemistry Synthesis.
J. Med. Chem. 2020,
63 (16), 8667–8682.
https://doi.org/10.1021/acs.jmedchem.9b02120.
Hirschfeld, L.; Swanson, K.; Yang, K.; Barzilay, R.; Coley, C. W. Uncertainty Quantification Using Neural Networks for Molecular Property Prediction.
J. Chem. Inf. Model. 2020,
60 (8), 3770–3780.
https://doi.org/10.1021/acs.jcim.0c00502.
Fortunato, M. E.; Coley, C. W.; Barnes, B. C.; Jensen, K. F. Data Augmentation and Pretraining for Template-Based Retrosynthetic Prediction in Computer-Aided Synthesis Planning.
J. Chem. Inf. Model. 2020,
60 (7), 3398–3407.
https://doi.org/10.1021/acs.jcim.0c00403.
Jin, W.; Barzilay, R.; Jaakkola, T. Multi-Objective Molecule Generation Using Interpretable Substructures.
arXiv:2002.03244. 2020.
http://arxiv.org/abs/2002.03244.
Scalia, G.; Grambow, C. A.; Pernici, B.; Li, Y.-P.; Green, W. H. Evaluating Scalable Uncertainty Estimation Methods for Deep Learning-Based Molecular Property Prediction.
J. Chem. Inf. Model. 2020,
60 (6), 2697–2717.
https://doi.org/10.1021/acs.jcim.9b00975.
Stokes, J. M.; Yang, K.; Swanson, K.; Jin, W.; Cubillos-Ruiz, A.; Donghia, N. M.; MacNair, C. R.; French, S.; Carfrae, L. A.; Bloom-Ackermann, Z.; Tran, V. M.; Chiappino-Pepe, A.; Badran, A. H.; Andrews, I. W.; Chory, E. J.; Church, G. M.; Brown, E. D.; Jaakkola, T. S.; Barzilay, R.; Collins, J. J. A Deep Learning Approach to Antibiotic Discovery.
Cell 2020,
180 (4), 688-702.e13.
https://doi.org/10.1016/j.cell.2020.01.021.
Gao, H.; Coley, C. W.; Struble, T. J.; Li, L.; Qian, Y.; Green, W. H.; Jensen, K. F. Combining Retrosynthesis and Mixed-Integer Optimization for Minimizing the Chemical Inventory Needed to Realize a WHO Essential Medicines List.
React. Chem. Eng. 2020,
5 (2), 367–376.
https://doi.org/10.1039/C9RE00348G.
Coley, C. W.; Eyke, N. S.; Jensen, K. F. Autonomous Discovery in the Chemical Sciences Part II: Outlook.
Angewandte Chemie International Edition 2020,
59 (52), 23414–23436.
https://doi.org/10.1002/anie.201909989.
Coley, C. W.; Eyke, N. S.; Jensen, K. F. Autonomous Discovery in the Chemical Sciences Part I: Progress.
Angewandte Chemie International Edition 2020,
59 (51), 22858–22893.
https://doi.org/10.1002/anie.201909987.
Struble, T. J.; Coley, C. W.; Jensen, K. F. Multitask Prediction of Site Selectivity in Aromatic C-H Functionalization Reactions.
Reaction Chemistry & Engineering 2019,
5 (5).
https://doi.org/10.26434/chemrxiv.9735599.v1.
Yang, K.; Swanson, K.; Jin, W.; Coley, C.; Eiden, P.; Gao, H.; Guzman-Perez, A.; Hopper, T.; Kelley, B.; Mathea, M.; Palmer, A.; Settels, V.; Jaakkola, T.; Jensen, K.; Barzilay, R. Analyzing Learned Molecular Representations for Property Prediction.
J. Chem. Inf. Model. 2019,
59 (8), 3370–3388.
https://doi.org/10.1021/acs.jcim.9b00237.
Coley, C. W.; Green, W. H.; Jensen, K. F. RDChiral: An RDKit Wrapper for Handling Stereochemistry in Retrosynthetic Template Extraction and Application.
J. Chem. Inf. Model. 2019,
59 (6), 2529–2537.
https://doi.org/10.1021/acs.jcim.9b00286.
Li, Y.-P.; Han, K.; Grambow, C. A.; Green, W. H. Self-Evolving Machine: A Continuously Improving Model for Molecular Thermochemistry.
J. Phys. Chem. A 2019,
123 (10), 2142–2152.
https://doi.org/10.1021/acs.jpca.8b10789.
Coley, C. W.; Jin, W.; Rogers, L.; Jamison, T. F.; Jaakkola, T. S.; Green, W. H.; Barzilay, R.; Jensen, K. F. A Graph-Convolutional Neural Network Model for the Prediction of Chemical Reactivity.
Chem. Sci. 2019,
10 (2), 370–377.
https://doi.org/10.1039/C8SC04228D.
Gao, H.; Struble, T. J.; Coley, C. W.; Wang, Y.; Green, W. H.; Jensen, K. F. Using Machine Learning To Predict Suitable Conditions for Organic Reactions.
ACS Cent. Sci. 2018,
4 (11), 1465–1476.
https://doi.org/10.1021/acscentsci.8b00357.
Coley, C. W.; Rogers, L.; Green, W. H.; Jensen, K. F. SCScore: Synthetic Complexity Learned from a Reaction Corpus.
J. Chem. Inf. Model. 2018,
58 (2), 252–261.
https://doi.org/10.1021/acs.jcim.7b00622.
Coley, C. W.; Barzilay, R.; Green, W. H.; Jaakkola, T. S.; Jensen, K. F. Convolutional Embedding of Attributed Molecular Graphs for Physical Property Prediction.
J Chem Inf Model 2017,
57 (8), 1757–1772.
https://doi.org/10.1021/acs.jcim.6b00601.
Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.; Jensen, K. F. Prediction of Organic Reaction Outcomes Using Machine Learning.
ACS Cent. Sci. 2017,
3 (5), 434–443.
https://doi.org/10.1021/acscentsci.7b00064.